Sains Malaysiana 53(12)(2024): 3437-3462

http://doi.org/10.17576/jsm-2024-5312-24

 

The One-Sided Variable Sampling Interval Exponentially Weighted Moving Average Charts Under the Gamma Distribution

(Carta Purata Bergerak Berpemberat Eksponen Selang Pensampelan Berubah-ubah Satu Hala di Bawah Taburan Gamma)

 

KAI LE GOH1, WEI LIN TEOH1,2,*, JING WEI TEOH1, ZHI LIN CHONG3 & XINYING CHEW4

 

1School of Mathematical and Computer Sciences, Heriot-Watt University Malaysia, 62200 Putrajaya, Malaysia
2International Chair in Data Science & Explainable Artificial Intelligence, International Research Institute for Artificial Intelligence and Data Science, Dong A University, Danang, Vietnam
3Department of Electronic Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
4School of Computer Science, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia

 

Received: 26 July 2024/Accepted: 25 October 2024

 

Abstract

Recently, adaptive quality control charts have been frequently utilised in diverse production and manufacturing industries to ensure process stability and maintain a desirable level of product quality. Among these charts, the variable sampling interval (VSI) exponentially weighted moving average (EWMA) chart is known for its sensitivity and efficiency in monitoring the process mean shifts. However, the existing literature on the design of the VSI EWMA chart is predicated on the presumption that the underlying process adheres to a normal distribution. This normality assumption is often violated in manufacturing settings, where many practical processes tend to follow non-normal or skewed distributions. Therefore, this paper investigates the performance of one-sided VSI EWMA charts designed under the normal distribution model, when the quality characteristics of interest follow a gamma distribution. Our findings indicate that the in-control average time to signal and the standard deviation of the time to signal for the one-sided VSI EWMA charts are significantly deteriorated under the gamma distribution. To tackle this problem, this paper proposes new charting parameters specifically derived for the one-sided VSI EWMA charts under the gamma distribution. Besides, comparative analyses show that the proposed one-sided VSI EWMA charts exhibit the best detection speed compared to the one-sided Shewhart and EWMA charts, when the process follows a gamma distribution. An illustrative application of the one-sided VSI EWMA chart for monitoring the weight of bias tires in scooter manufacturing is provided at the end of this paper.

 

Keywords: Average time to signal; exponentially weighted moving average control chart; gamma distribution; statistical process control; variable sampling interval scheme

 

Abstrak

Baru-baru ini, carta kawalan kualiti beradaptif sering digunakan dalam pelbagai industri pengeluaran dan pembuatan untuk memastikan kestabilan proses dan mengekalkan tahap kualiti produk yang diinginkan. Antara carta ini, carta kawalan purata bergerak berpemberat eksponen selang pensampelan berubah-ubah (VSI EWMA) dikenali kerana kepekaan dan kecekapannya dalam memantau perubahan min proses. Walau bagaimanapun, kepustakaan sedia ada yang mengenai reka bentuk carta VSI EWMA adalah berdasarkan andaian bahawa proses asas mematuhi taburan normal. Andaian kenormalan ini sering tidak dipenuhi dalam persekitaran perbuatan dengan kebanyakan proses praktikal cendurung mengikuti taburan yang tidak normal atau taburan yang condong. Oleh itu, kertas ini mengkaji prestasi carta VSI EWMA satu hala yang direka di bawah model taburan normal, apabila ciri kualiti yang diminati mengikuti taburan gamma. Hasil kajian menunjukkan bahawa purata masa untuk isyarat dan sisihan piawai masa untuk isyarat dalam kawalan bagi carta VSI EWMA satu hala merosot dengan ketara di bawah taburan gamma. Untuk menangani masalah ini, kertas ini mencadangkan parameter carta baharu yang khususnya diperoleh untuk carta VSI EWMA satu hala di bawah taburan gamma. Selain itu, analisis perbandingan menunjukkan bahawa carta VSI EWMA satu hala yang dicadangkan mempunyai kelajuan pengesanan terbaik berbanding dengan carta Shewhart dan EWMA satu hala, apabila proses mengikuti taburan gamma. Satu aplikasi ilustrasi bagi carta VSI EWMA satu hala untuk memantau berat tayar bias dalam pembuatan skuter disediakan pada bahagian akhir kertas ini.

 

Kata kunci: Carta kawalan purata bergerak berpemberat eksponen; kawalan proses statistik; purata masa untuk isyarat; skim selang pensampelan berubah-ubah; taburan gamma

 

REFERENCES

Bai, Y., Chiang, J.Y., Liu, W. & Mou, Z. 2024. An enhanced EWMA chart with variable sampling interval scheme for monitoring the exponential process with estimated parameters. Scientific Reports 14(4): 7958.  

Brook, D. & Evans, D.A. 1972. An approach to the probability distribution of CUSUM run length. Biometrika 59(3): 539-549.

Borror, C.M., Montgomery, D.C. & Runger, G.C. 1999. Robustness of the EWMA control chart to non-normality. Journal of Quality Technology 31(3): 309-316.

Chakraborti, S. & Graham, M.A. 2019. Nonparametric (distribution-free) control charts: An updated overview and some results. Quality Engineering 31(4): 523-544.

Chakraborti, S., Van Der Laan, P. & Bakir, S.T. 2001. Nonparametric control charts: An overview and some results. Journal of Quality Technology 33(3): 304-315.

Chou, Y.M., Polansky, A.M. & Mason, R.L. 1998. Transforming non-normal data to normality in statistical process control. Journal of Quality Technology 30(2): 133-141. 

Deenen, P.C., Middelhuis, J., Akcay, A. & Adan, I.J.B.F. 2024. Data-driven aggregate modelling of a semiconductor wafer fab to predict WIP levels and cycle time distributions. Flexible Services and Manufacturing 36(6): 567-596.

Hamasha, M.M., Ali, H., Hamasha, S. & Ahmed, A. 2022. Ultra-fine transformation of data for normality. Heliyon 8(5): e09370.

Haq, A. & Akhtar, S. 2022. Auxiliary information based maximum EWMA and DEWMA charts with variable sampling intervals for process mean and variance. Communications in Statistics – Theory and Methods 51(12): 3985-4005.

Hu, X., Zhang, S., Xie, F. & Song, Z. 2024. Triple exponentially weighted moving average control charts without or without variable sampling interval for monitoring the coefficient of variation. Journal of Statistical Computation and Simulation 94(3): 536-570.

Hu, X., Zhang, J., Zhang, S., Zhou, P. & Zhang, Y. 2023. A variable sampling interval one-sided CUSUM control chart for monitoring the multivariate coefficient of variation. Journal of King Saud University – Science 35(7): 102845.

Kao, S. & Ho, C. 2006. Process monitoring of the sample variances through an optimal normalizing transformation. The International Journal of Advanced Manufacturing Technology 30(5): 459-469.

Khoo, M.B.C., Saha, S., Lee, H.C. & Castagliola, P. 2019. Variable sampling interval exponentially weighted moving average median chart with estimated process parameters. Quality and Reliability Engineering International 35(8): 2732-2748.

Li, C.I., Su, N.C., Su, P.F. & Shyr, Y. 2014. The design of  and R control charts for skew normal distributed data. Communications in Statistics – Theory and Methods 43(23): 4908-4924. 

Lee, P. & Zhang, H. 2020. The design of chart when the mean and parameters of gamma distribution change. 2020 International Conference on Modern Education and Information Management (ICMEIM) 2020(1): 538-542.

Lee, P.H., Torng, C.C., Lin, C.H. & Chou, C.Y. 2022. Control chart pattern recognition using spectral clustering technique and support vector machine under gamma distribution. Computers & Industrial Engineering 171(9): 108437.

Liu, Y., Liu, Y. & Jung, U. 2020. Nonparametric multivariate control chart based on density-sensitive novelty weight for non-normal processes. Quality Technology & Quantitative Management 17(2): 203-215.

Madrid-Alvarez, H.M., García-Díaz, J.C. & Tercero-Gómez, V.G. 2024. A CUSUM control chart for gamma distribution with guaranteed performance. Quality and Reliability Engineering International 40(3): 1279-1301.

Nawaz, M.S., Azam, M. & Aslam, M. 2021. EWMA and DEWMA repetitive control charts under non-normal processes. Journal of Applied Statistics 48(1): 4-40.

Noorossana, R., Fathizadan, S. & Nayebpour, M.R. 2016. EWMA control chart performance with estimated process parameters under non-normality. Quality and Reliability Engineering International 32(5): 1637-1654.  

Parvin, R., Khoo, M.B.C., Saha, S. & Teoh, W.L. 2023. Proposed variable sampling interval maximum EWMA and distance EWMA charts with unknown process parameters. Stat 12(1): e605.  

Reynolds, M.R., Amin, R.W., Arnold, J.C. & Nachlas, J.A. 1988. charts with variable sampling intervals. Technometrics 30(2): 181-192.

Sabahno, H. & Eriksson, M. 2024. Variable parameters memory-type control charts for simultaneous monitoring of the mean and variability of multivariate multiple linear regression profiles. Scientific Reports 12(4): 9288.

Sanmugan, K. & Muzalwana, A.T. 2022. Insights into variations in COVID-19 infections in Malaysia. Sains Malaysiana 51(5): 1599-1608.

Teh, S.Y., Khoo, M.B.C., Ong, K.S., Soh, K.L. & Teoh, W.L. 2015. A study on the -EWMA chart for monitoring the process variance based on the MRL performance. Sains Malaysiana44(7): 1067-1075.

Teoh, J.W., Teoh, W.L., Chong, Z.L., Lee, M.H. & Khaw, K.W. 2024. A robust design for the omnibus SPRT control chart under skewed data distributions. Sains Malaysiana 53(6): 1441-1461.

Teoh, W.L., Ong, L.V., Khoo, M.B.C., Castagliola, P. & Chong, Z.L. 2021. The variable sampling interval EWMA chart with estimated process parameters. Journal of Testing and Evaluation 49(2): 1237-1265.

Teoh, W.L., Yeong, W.C., Khoo, M.B.C. & Teh, S.Y. 2016. The performance of the double sampling chart with estimated process parameters for skewed distributions. Academic Journal of Science 5(1): 237-252. 

Tran, K.D., Nguyen, H.D., Nguyen, T.H. & Tran, K.P. 2020. Design of a variable sampling interval exponentially weighted moving average median control chart in presence of measurement errors. Quality and Reliability Engineering International 37(1): 374-390.  

Wang, Y., Hu, X., Zhou, X., Qiao, Y. & Wu, S. 2020. New one-sided EWMA t charts without and with variable sampling intervals for monitoring the process mean. Mathematical Problems in Engineering 2020(1): 7567215.

Wu, Y., Younas, S., Abbas, K., Ali, A. & Khan, S.A. 2020. Monitoring reliability for three-parameter Frechet distribution using control charts. IEEE Access 8(1): 71245-71253.

Xie, F., Castagliola, P., Li, Z., Sun, J. & Hu, X. 2022. One-sided adaptive truncated exponentially weighted moving average schemes for detecting process mean shifts. Quality Technology & Quantitative Management 19(5): 533-561.

Yeong, W.C., Khoo, M.B.C., Tham, L.K., Teoh, W.L. & Rahim, M.A. 2017. Monitoring the coefficient of variation using a variable sampling interval EWMA chart. Journal of Quality Technology 49(4): 380-401. 

 

*Corresponding author; email: wei_lin.teoh@hw.ac.uk

 

 

 

 

 

 

 

 

previous